Development of software for the study of ornithocomplexes on the territory of wind stations using the results of observations by the route counting method

Keywords: wind power plant, information system, wind park monitoring, ornithocomplexes

Abstract

An information system (IS) BIRDS2 has been developed for storing and analyzing data obtained by monitoring the behavior of birds on the territory of wind power plants (WPPs) using the route accounting method. The program code is compiled on the basis of Windows Forms technology in the Microsoft Visual Studio Community 2019 software development environment. The operation of the program was tested by comparing the results of monitoring bird migration on the territory of the Primorsk-1 wind farm with known literature data. The sample size of registered birds used for analysis consisted of 8927 birds, of which 802 were of the transit type, 2511 were of the forage type, and 5614 were of the nesting type. The observations were carried out by the route counting method, adapted by V. D. Siokhin and P. I. Gorlov in relation to the territory of wind parks. During the monitoring process, eight parameters were recorded: the date of observation, the time of registration, the coordinates of the registration on the Google map, the number of birds, the species of the individual, the direction of flight, the type of location on the territory of the wind farm (transit, forage, nesting), and the flight altitude. The user-friendly interface allows you to analyze the behavior of birds on the territory of the station according to all accounting characteristics. The IS makes it possible to determine the number of birds in flight over the territory of the wind park at a given time, to find the coordinates of the points of intersection of the bird's flight path with the boundaries of the wind farm, to calculate the length of the bird's flight path over the area occupied by the wind park.

References

Анненков, О. Б., Горлов, П. І., Сіохін, В. Д., Сальнікова-Буденко, І. Б., & Сіохін, Є. В. (2014). Методика використання Веб додатку «WebBirds» для моніторингу сезонних орнітокомплексів і комп’ютерного моделювання оцінки впливу ВЕС. У Науково-методичні основи охорони та оцінки впливу на навколишнє природне середовище під час проектування, будівництва, експлуатації вітрових та сонячних електростанцій, ліній електромереж: методичний посібник (с. 93-107). Мелітополь: МДПУ імені Б. Хмельницького.

Бунецкий, Д. (2019). В Украине заработала одна из крупнейших ветряных электростанций. Delo.ua. Взято с https://delo.ua/business/v-ukraine-zarabotala-odna-iz-krupnejshih-vetrjan-359989/.

Горлов, П. І., & Сіохін, В. Д. (2012). Аналіз міжнародного досвіду вивчення впливу вітрових електростанцій на птахів. Біологічний Вісник Мелітопольського державного педагогічного університету імені Богдана Хмельницького, (1), 37–47.

Любас, Д. (2013). Ветроэнергетика Украины: потенциал и перспективы развития. Электрик. Международный электротехнический журнал. Взято с http://electrician.com.ua/posts/1280.

Осадчий, В. В., Еремеев, В. С., & Осадчая, K. П. (2018). Программное обеспечение для анализа возможности столкновения птиц с роторами ветровых электроустановок. Ukrainian Journal of Educational Studies and Information Technology, 6(4), 1-18. https://doi.org/10.32919/uesit.2018.04.01.

Сіохін, В. Д., Горлов, П. І., Поліщук, І. К., Подорожний, С. М., Долинна, О. М., Сальникова-Буденко, І. Б. та ін. (2018). Проведення сучасних моніторингових досліджень та розробка експертного висновку і наукового звіту щодо впливу будівництва ВЕС на природні комплекси довкілля, орнітологічні комплекси та мігруючих птахів, кажанів у межах Приморського району Запорізької області. Мелітополь: Науково-виробниче підприємство «Екоресурс і моніторинг».

Сіохін, В. Д., Черничко, Й. І., Сідоренко, А. І., Горлов, П. І., & Алейнікова, К. Г. (2020). Кумулятивна оцінка впливу вітрових станцій на природні комплекси в межах техногенних територій північно-західного Приазов’я. Повідомлення 2. Сезонні комплекси птахів. В Моніторинг та охорона біорізноманіття в Україні : Прикладні аспекти моніторингу та охорони біорізноманіття. Серія: «Conservation Biology in Ukraine», 3(16) (с. 152-167). Київ; Чернівці: Друк Арт.

Энергореформа. (2020). Суммарная установленная мощность ВЭС в Украине на начало 2020 года достигла 1,2 ГВт – УВЭА. Взято с http://reform.energy/news/summarnaya-ustanovlennaya-moshchnost-ves-v-ukraine-na-nachalo-2020-goda-dostigla-12-gvt-uvea-14661.

Electrovesti.net. (2019). Украина вошла в ТОП-5 лидеров Европы по ветроэнергетике. Retrieved from https://elektrovesti.net/67440_ukraina-voshla-v-top-5-liderov-evropy-po-vetroenergetike.

Arnett, E. B., & Baerwald, E. F. (2013). Impacts of Wind Energy Development on Bats: Implications for Conservation. In R. Adams, S. Pedersen (Eds.), Bat Evolution, Ecology, and Conservation (pp. 435-456). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_21.

Aschwanden, J., Stark, H., Peter, D., Steuri, Th., Schmid, B., & Liechti, F. (2018). Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. Biological Conservation, 220, 228–236. https://doi.org/10.1016/j.biocon.2018.01.005.

Dai, K., Bergot, A., Liang, C., Xiang, W.-N., & Huang, Z. (2015). Environmental issues associated with wind energy – A review. Renewable Energy, 75, 911–921. https://doi.org/10.1016/j.renene.2014.10.074.

Jervis, L., McGovern, S., Sweeney, S., & Buisson, R. (2017). Offshore Ornithology – Collision Risk Modelling Report, 4, Annex 4-2. London: Vattenfall Wind Power Ltd. Retrieved from https://corporate.vattenfall.co.uk/globalassets/uk/projects/thanet-ext/peir-nov-2017/volume-4/vol4ann4-2-ornithologycrm.pdf.

Krijgsveld, K. L., Akershoek, K., Schenk, F., Dijk, F., & Dirksen, S. (2009). Collision risk of birds with modern large wind turbines. Ardea, 97(3), 357–366.

Lekuona, J. M., & Ursúa, C. (2007). Avian mortality in wind power plants of Navarra (northern Spain). In De Lucas, M., Janss, G. F. E., & Ferrer, M. (Eds.), Birds and Wind Power: risk assessment and mitigation (pp. 177-192). Madrid: Quercus Editions. Retrieved from http://www.vliz.be/en/imis?module=ref&refid=111975&printversion=1&dropIMIStitle=1.

Loss, S. R., Will, T., & Marra, P. P. (2013). Estimates of bird collision mortality at wind farms in the contiguous United States. Biological Conservation, 168, 201–209. http://doi.org/10.1016/j.biocon.2013.10.007.

Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., Mascarenhas, M., & Bernardino, J. (2014). Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biological Conservation, 179, 40–52. https://doi.org/10.1016/j.biocon.2014.08.017.

May, R., Reitan, O., Bevanger, K., Lorentsen, S. H., & Nygard, T. (2015). Mitigating windturbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Renewable and Sustainable Energy Reviews, 42, 170–181. https://doi.org/10.1016/j.rser.2014.10.002.

Morinha, F., Travassos, P., Seixas, F., Martins, A., Bastos, R., Carvalho, D., Magalhăes, P., Santos, M., Bastos, E., & Cabral, J. A. (2014). Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study, 61(2), 255–259. https://doi.org/10.1080/00063657.2014.883357.

Osadchyi, V., Siokhin, V., Gorlov, P., Yeremieiev, V., & Osadcha, K. (2019). Development of the information system for forecasting collision between birds and wind power farms. Eastern-European Journal of Enterprise Technologies, 4(2), 29–40. https://doi.org/10.15587/1729-4061.2019.174398.

Scottish Natural Heritage. (2014). Guidance. Recommended bird survey methods to inform impact assessment of onshore wind farms. Retrieved from https://www.nature.scot/sites/default/files/2017-09/Guidance%20note%20-%20Recommended%20bird%20survey%20methods%20to%20inform%20impact%20assessment%20of%20onshore%20windfarms.pdf.

Sebastian-Gonzalez, E., Perez-Garcia, J. M., Carrete, M., Donazar, J. A., & Sanchez-Zapata, J. A. (2018). Using network analysis to identify indicator species and reduce collision fatalities at wind farms. Biological Conservation, 224, 209–212. https://doi.org/10.1016/j.biocon.2018.06.003.

Smith, J. A., & Dwyer, J. F. (2016). Avian interactions with renewable energy infrastructure: An update. The Condor, 118(2), 411–423. https://doi.org/10.1650/CONDOR-15-61.1.

Yeremieiev, V., Osadchyi, V., Siokhin, V., & Gorlov, P. (2020). Methodology for calculating the number of migratory birds in the territory of the wind farms of the Azov region using ICT. E3S Web of Conferences, 166, Article 01003. https://doi.org/10.1051/e3sconf/202016601003.

Wang, Sh., Wang, S., & Smith, P. (2015). Ecological impacts of wind farms on birds: questions, hypotheses, and research needs. Renewable and Sustainable Energy Reviews, 44, 599-607. https://doi.org/10.1016/j.rser.2015.01.031.

Winkelman, J. E. (1992). De invloed van de Sep-proefwindcentrale te Oosterbierum (Fr.) op vogels, 1: aanvaringsslachtoffers. RIN-rapport 92/2. Arnhem, Netherlands: DLO-Instituut voor Bos- en Natuuronderzoek.

REFERENCES

Annenkov, O. B., Horlov, P. I., Siokhin, V. D., Salnikova-Budenko, I. B., & Siokhin, Ye. V. (2014). Methodology for using the web-based application "WebBirds" to monitor seasonal ornithomplexes and computer simulation of the wind power plants impact. In Naukovo-metodychni osnovy okhorony ta otsinky vplyvu na navkolyshnie pryrodne seredovyshche pid chas proektuvannia, budivnytstva, ekspluatatsii vitrovykh ta soniachnykh elektrostantsii, linii elektromerezh: metodychnyi posibnyk (p. 93-107). Melitopol: Bogdan Khmelnitsky Melitopol State Pedagogical University. (in Ukrainian)

Bunetskiy, D. (2019). One of the largest wind power plants has been put into operation in Ukraine. Delo.ua. Retrieved from https://delo.ua/business/v-ukraine-zarabotala-odna-iz-krupnejshih-vetrjan-359989/. (in Russian)

Horlov, P. I., & Siokhin, V. D. (2012). Analysis of international experience in studying the influence of wind power plants on birds. Biolohichnyi Visnyk Melitopolskoho derzhavnoho pedahohichnoho universytetu imeni Bohdana Khmelnytskoho, (1), 37–47. (in Ukrainian)

Lyubas, D. (2013). Wind energy in Ukraine: potential and development prospects. Elektrik. Mezhdunarodnyiy elektrotehnicheskiy zhurnal. Retrieved from http://electrician.com.ua/posts/1280. (in Russian)

Osadchiy, V. V., Eremeev, V. S., & Osadchaya, K. P. (2018). Software for analyzing the probability of collisions of birds with rotors of wind electrical installations. Ukrainian Journal of Educational Studies and Information Technology, 6(4), 1-18. https://doi.org/10.32919/uesit.2018.04.01. (in Russian)

Siokhin, V. D., Horlov, P. I., Polishchuk, I. K., Podorozhnyi, S. M., Dolynna, O. M., Salnykova-Budenko, I. B., et al. (2018). Conducting modern monitoring studies and developing an expert opinion and scientific report on the impact of wind farm construction on natural environmental complexes, ornithological complexes and migratory birds, bats within the Primorsky district of Zaporizhzhia region. Melitopol: Naukovo-vyrobnyche pidpryiemstvo "Ekoresurs i monitorynh". (in Ukrainian)

Siokhin, V. D., Chernychko, Y. I., Sidorenko, A. I., Horlov, P. I., & Aleinikova, K. H. (2020). Cumulative assessment of the impact of wind farms on natural complexes within the man-made areas of the north-western Azov Sea. Message 2. Seasonal bird complexes. In Biodiversity Monitoring and Protection in Ukraine: Applied Aspects of Biodiversity Monitoring and Protection. Series "Conservation Biology in Ukraine", 3(16) (pp. 152-167). Kyiv; Chernivtsi: Druk Art. (in Ukrainian)

Energoreforma. (2020). The total installed capacity of wind farms in Ukraine at the beginning of 2020 reached 1.2 GW – UWEA. Retrieved from http://reform.energy/news/summarnaya-ustanovlennaya-moshchnost-ves-v-ukraine-na-nachalo-2020-goda-dostigla-12-gvt-uvea-14661. (in Russian)

Electrovesti.net. (2019). Ukraine entered the TOP-5 leaders of Europe in wind energy. Retrieved from https://elektrovesti.net/67440_ukraina-voshla-v-top-5-liderov-evropy-po-vetroenergetike. (in Russian)

Arnett, E. B., & Baerwald, E. F. (2013). Impacts of Wind Energy Development on Bats: Implications for Conservation. In R. Adams, S. Pedersen (Eds.), Bat Evolution, Ecology, and Conservation (pp. 435-456). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_21. (in English)

Aschwanden, J., Stark, H., Peter, D., Steuri, Th., Schmid, B., & Liechti, F. (2018). Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. Biological Conservation, 220, 228–236. https://doi.org/10.1016/j.biocon.2018.01.005. (in English)

Dai, K., Bergot, A., Liang, C., Xiang, W.-N., & Huang, Z. (2015). Environmental issues associated with wind energy – A review. Renewable Energy, 75, 911–921. https://doi.org/10.1016/j.renene.2014.10.074. (in English)

Jervis, L., McGovern, S., Sweeney, S., & Buisson, R. (2017). Offshore Ornithology – Collision Risk Modelling Report, 4, Annex 4-2. London: Vattenfall Wind Power Ltd. Retrieved from https://corporate.vattenfall.co.uk/globalassets/uk/projects/thanet-ext/peir-nov-2017/volume-4/vol4ann4-2-ornithologycrm.pdf. (in English)

Krijgsveld, K. L., Akershoek, K., Schenk, F., Dijk, F., & Dirksen, S. (2009). Collision risk of birds with modern large wind turbines. Ardea, 97(3), 357–366. (in English)

Lekuona, J. M., & Ursúa, C. (2007). Avian mortality in wind power plants of Navarra (northern Spain). In De Lucas, M., Janss, G. F. E., & Ferrer, M. (Eds.), Birds and Wind Power: risk assessment and mitigation (pp. 177-192). Madrid: Quercus Editions. Retrieved from http://www.vliz.be/en/imis?module=ref&refid=111975&printversion=1&dropIMIStitle=1. (in English)

Loss, S. R., Will, T., & Marra, P. P. (2013). Estimates of bird collision mortality at wind farms in the contiguous United States. Biological Conservation, 168, 201–209. http://doi.org/10.1016/j.biocon.2013.10.007. (in English)

Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., Mascarenhas, M., & Bernardino, J. (2014). Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biological Conservation, 179, 40–52. https://doi.org/10.1016/j.biocon.2014.08.017. (in English)

May, R., Reitan, O., Bevanger, K., Lorentsen, S. H., & Nygard, T. (2015). Mitigating windturbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Renewable and Sustainable Energy Reviews, 42, 170–181. https://doi.org/10.1016/j.rser.2014.10.002. (in English)

Morinha, F., Travassos, P., Seixas, F., Martins, A., Bastos, R., Carvalho, D., Magalhăes, P., Santos, M., Bastos, E., & Cabral, J. A. (2014). Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study, 61(2), 255–259. https://doi.org/10.1080/00063657.2014.883357. (in English)

Osadchyi, V., Siokhin, V., Gorlov, P., Yeremieiev, V., & Osadcha, K. (2019). Development of the information system for forecasting collision between birds and wind power farms. Eastern-European Journal of Enterprise Technologies, 4(2), 29–40. https://doi.org/10.15587/1729-4061.2019.174398. (in English)

Scottish Natural Heritage. (2014). Guidance. Recommended bird survey methods to inform impact assessment of onshore wind farms. Retrieved from https://www.nature.scot/sites/default/files/2017-09/Guidance%20note%20-%20Recommended%20bird%20survey%20methods%20to%20inform%20impact%20assessment%20of%20onshore%20windfarms.pdf. (in English)

Sebastian-Gonzalez, E., Perez-Garcia, J. M., Carrete, M., Donazar, J. A., & Sanchez-Zapata, J. A. (2018). Using network analysis to identify indicator species and reduce collision fatalities at wind farms. Biological Conservation, 224, 209–212. https://doi.org/10.1016/j.biocon.2018.06.003. (in English)

Smith, J. A., & Dwyer, J. F. (2016). Avian interactions with renewable energy infrastructure: An update. The Condor, 118(2), 411–423. https://doi.org/10.1650/CONDOR-15-61.1. (in English)

Yeremieiev, V., Osadchyi, V., Siokhin, V., & Gorlov, P. (2020). Methodology for calculating the number of migratory birds in the territory of the wind farms of the Azov region using ICT. E3S Web of Conferences, 166, Article 01003. https://doi.org/10.1051/e3sconf/202016601003. (in English)

Wang, Sh., Wang, S., & Smith, P. (2015). Ecological impacts of wind farms on birds: questions, hypotheses, and research needs. Renewable and Sustainable Energy Reviews, 44, 599-607. https://doi.org/10.1016/j.rser.2015.01.031. (in English)

Winkelman, J. E. (1992). De invloed van de Sep-proefwindcentrale te Oosterbierum (Fr.) op vogels, 1: aanvaringsslachtoffers. RIN-rapport 92/2. Arnhem, Netherlands: DLO-Instituut voor Bos- en Natuuronderzoek. (in Dutch)

Published
2020-09-30
How to Cite
Yeremieiev, V. (2020). Development of software for the study of ornithocomplexes on the territory of wind stations using the results of observations by the route counting method. Ukrainian Journal of Educational Studies and Information Technology, 8(3), 28-48. https://doi.org/10.32919/uesit.2020.03.04