Creation of a model traffic of autonomous vehicles based on Arduino

Keywords: motion models, control system, Arduino

Abstract

The development of technologies and their integration into society makes the creation of models and algorithms of process automation relevant. One of these tasks is the creation of an autonomous vehicle. The article describes an example of creation of a self-driving transport model based on the Arduino board. The statement of the task is done, the technical characteristics of the model, the conditions of autonomous movement, and also external obstacles, such as traffic lights, pedestrians, traffic signs are determined. The model uses a linear light sensor for controlling itself. An empirical study of the concept of autonomy of vehicles was carried out: collecting information about various implementations of autonomous driving and its supporting systems, analysing the technical characteristics of the hardware for building the system, developing options for autonomous driving using various equipment, experimental testing of hypotheses about the suitability of an autonomous control system, and testing and evaluating car operation. The autonomous movement model was tested on a radio-controlled car (scale 1:10). To control the movement the Arduino MEGA microcontroller was selected.

References

Всеукраїнські змагання «Роботрафік 2019». (2019). Взято з http://www.ort.org.ua/news/novini-ta-anonsi/vseykrayinski-zmagannya-robotrafik-2019/.

Габрієль, Ю., Щур, Т., Паславський, В., & Ямнюк, Ю. (2013). Алгоритм управління астатичного регулятора електронно-керованого ПНВТ дизеля. Вісник Львівського національного аграрного університету. Серія: Агроінженерні дослідження, 17, 232-239.

Гилимьянов, Р. Ф., Пестерев, А. В., & Рапопорт, Л. Б. (2008). Управление движением колёсного робота в задаче следования вдоль криволинейного пути. Известия РАН. Теория и системы управления, 47(6), 158–165.

Морзе, Н. В., Гладун, М. А., & Дзюба, С. М. (2018). Формування ключових і предметних компетентностей учнів робототехнічними засобами STEM-освіти. Інформаційні технології і засоби навчання, 65(3), 37-52. DOI: https://doi.org/10.33407/itlt.v65i3.2041.

Поляков, К. Ю. (2012). Основы теории автоматического управления: учеб. пособие. Санкт-Петербург: Изд-во СПбГМТУ.

Ahamed, Т. (2006). Navigation of an autonomous tractor using multiple sensors. (Doctor of Philosophy in Agricultural Science Thesis). University of Tsukuba, Tsukuba.

Berglund, T. (2003). Path-Planning with Obstacle-Avoiding Minimum Curvature Variation B-splines. (Licentiate Thesis). Luleå University of Technology, Luleå.

Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile Robot Positioning Sensors and Techniques. Invited paper for the Journal of Robotic Systems, Special Issue on Mobile Robots, 14(4), 231-249.

Choset, H. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation. Cambridge: The MIT Press.

Fang, H., Fan, R., Thuilot, B., & Martinet, P. (2006). Trajectory tracking control of farm vehicles in presence of sliding. Robotics and Autonomous Systems, 54(10), 828–839. DOI: https://doi.org/10.1016/j.robot.2006.04.011.

Thuilot, B., Cariou, C., Martinet, P., & Berducat, M. (2002). Automatic Guidance of a Farm Tractor Relying on a Single CP-DGPS. Autonomous Robots, 13(1), 53-71. DOI: https://doi.org/10.1023/A:1015678121948.

SAE Standards Development. (2019). Retrieved from https://www.sae.org/standards/development.

REFERENCES

Ukrainian competitions Robotraffic 2019 Competitions. (2019). Retrieved from http://www.ort.org.ua/news/novini-ta-anonsi/vseykrayinski-zmagannya-robotrafik-2019/. (in Ukrainian)

Gabriel, Y., Schur, T., Paslavsky, V., & Yamniuk, Y. (2013). Control algorithm of an astatic regulator of electronically controlled PNVT diesel. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu. Seriia: Ahroinzhenerni doslidzhennia, 17, 232-239. (in Ukrainian)

Gilimyanov, R. F., Pesterev, A. V., & Rapoport, L. B. (2008). Controlling the movement of a wheeled robot in the task of following along a curved path. Izvestija RAN. Teorija i sistemy upravlenija, 47(6), 158–165. (in Russian)

Morse, N. W., Gladun, M. A., & Dziuba, S. M. (2018). Formation of key and subject competences of students by robotic kits of STEM-education. Informatsiini tekhnolohii i zasoby navchannia, 65(3), 37-52. DOI: https://doi.org/10.33407/itlt.v65i3.2041. (in Ukrainian)

Polyakov, K. Yu. (2012). Fundamentals of the theory of automatic control: textbook. Saint-Petersburg: Izd-vo SPbGMTU. (in Russian)

Ahamed, Т. (2006). Navigation of an autonomous tractor using multiple sensors. (Doctor of Philosophy in Agricultural Science Thesis). University of Tsukuba, Tsukuba. (in English)

Berglund, T. (2003). Path-Planning with Obstacle-Avoiding Minimum Curvature Variation B-splines. (Licentiate Thesis). Luleå University of Technology, Luleå. (in English)

Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile Robot Positioning Sensors and Techniques. Invited paper for the Journal of Robotic Systems, Special Issue on Mobile Robots, 14(4), 231-249. (in English)

Choset, H. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation. Cambridge: The MIT Press. (in English)

Fang, H., Fan, R., Thuilot, B., & Martinet, P. (2006). Trajectory tracking control of farm vehicles in presence of sliding. Robotics and Autonomous Systems, 54(10), 828–839. DOI: https://doi.org/10.1016/j.robot.2006.04.011. (in English)

Thuilot, B., Cariou, C., Martinet, P., & Berducat, M. (2002). Automatic Guidance of a Farm Tractor Relying on a Single CP-DGPS. Autonomous Robots, 13(1), 53-71. DOI: https://doi.org/10.1023/A:1015678121948. (in English)

SAE Standards Development. (2019). Retrieved from https://www.sae.org/standards/development. (in English)

Published
2019-12-30
How to Cite
Valko, N., Bolharin, T., & Valko, K. (2019). Creation of a model traffic of autonomous vehicles based on Arduino. Ukrainian Journal of Educational Studies and Information Technology, 7(4), 1-9. https://doi.org/10.32919/uesit.2019.04.01